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ABSTRACT

NY
In this paper we will look at three proofs of the Weierstrass Approximation

Theorem. The first proof is in much the same form in which Weierstrass originally

proved his theorem. The next is due to Lebesgue. It is by far the easiest proof

to follow, with only a minimum knowledge of analysis required. The last arises

from probability and uses the Bernstein polynomials.

Secondly we look at a generalization of this theorem, called the Stone-

Weierstrass Theorem. This generalization was inspired by modern developments

in mathematics. The theorem deals with functions on a general compact space

rather than on a closed interval.
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INTRODUCTION

In 1885 Karl Weierstrass showed that every continuous

function in a closed interval can be uniformly approximated

by polynomials. This result is called the Weierstrass

Approximation Theorem.

Many mathematicians have since found new proofs of this

theorem, using techniques which arise from their particular

fields of interest. Some proofs give extra information

about the approximating polynomial, others do not. Some

require advanced knowledge of various fields, others can be

understood with a basic knowlege of analysis.

In this paper we will look at three proofs of the

Weierstrass Approximation Theorem. The first proof is in

much the same form in which Weierstrass originally proved

his theorem. The next is due to Lebesgue. It is by far the

easiest proof to follow, with only a minimum knowledge of

analysis required. The last arises from probability and

uses the Bernstein polynomials.

Secondly we look at a generalization of this theorem,

called the Stone-Weierstrass Theorem. This generalization

was inspired by modern developments in mathematics. The

theorem deals with functions on a general compact space

rather than on a closed interval.

I I

_ _ _ _ _ _ _ _ _
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I. PRELIMINARY REMARKS

Before we actually begin looking at the Weierstrass

Approximation Theorem we consider a preliminary lemma. It

shows that it is sufficient to prove the Weierstrass

Approximation Theorem on the closed interval (0,11.

Lemma

It is sufficient to prove the Weierstrass Approximation

Theorem for the special case [a,b] = [0,1].

Proof

If a < x < b, and x a a + (b - a)y, then 0 < y < 1.

Let f be a continuous function on [a,b]. Set g(y) - f(x).

Then g is a continuous function on [0,1]. By hypothesis,

there exists a polynomial p such that Ig(y) - p(y)J < e

for 0 < y < 1. Then

If(x) - l <

for a < x < b, and p is a polynomial.

i • :
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II. PROOF DUE TO WEIERSTRASS

In 1885, Weierstrass proposed and solved the following:

If f(x) is a continuous function, is it possible to make

the error of approximation arbitrarily small by increasing

the degree of the approximating polynomial? By looking at

the three theorems in this section we see that the answer

to this question is yes; and we will show this in much the

same form as Weierstrass first proved it. These theorems

require knowledge of some graduate-level analysis.

Remark

It is sufficient to prove the Weierstrass Approximation

Theorem for the special case f(l) - f(O) = 0. For if we

were to prove the theorem using these conditions, we see

that for any continuous f on [0,1] we could let

g(x) = f(x) f(0) - x[f(l) - f(0)] for 0 < x < 1.

Then g(0) = g(l) = 0, and if g can be obtained as the

limit of a uniformly convergent sequence of polynomials, it

is clear that the same is true for f, since f - g is a

polynomial.

Theorem 1

If f is a continuous function on (0,1] and if gn

is a family of functions such that:

a) gn > 0;

b) For each e > 0 there exists a 6 > 0 such
r

that Jltj)6 gn(t)dt < e if n is large;

gni
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c) 9 g(t)dt =1;
fT n

d) gn is even,

then (gn * f)(x) - f(x) uniformly on [0,1], where

(F * G)(x) is defined by (F * G)(x) = IL F(x - t)G(t)dt,

if this integral exists.

Proof

Assume by the previous remark that f(O) = f(l) = 0.

Since f is continuous on [0,1], a closed interval,

f is uniformly continuous on [0,1]. Furthermore, we

define f(x) to be zero for x outside [0,1]. Then f

is uniformly continuous on the whole real line.

Given e > 0, we choose 61 > 0 such that

[y - x1 < 61 implies that If(y) - f(x) < , which is

permissible by uniform continuity. Choose 60 > 0 so that

Ijtl>6 °0 gn (t )d t < where M - suplf(x)l, for n > No .

Let 6 = min(6o ,6). First we note that

(gn *f) (x gn (x -u)f(u)du

= - gn(u-x)f(u)du (using the evenness of g).

Let u- x t. Then u - x + t, so that

(gn * f)(x) f gn(t)f(x + t) dt.

We see that for 0 < x <1

; i



(gn*f)(x) -f(x)I = if gn(t)f(x + t)dt - f(x)I

= IJ(x+t)gn(t)dt-f(x) gn(t)dt

= [f(x+ t)- f(x)]gn(t)dti

<f If(x + t) -f(x) Ign(t)dt

=6f (x +t) f (x) Ign(t)dt + fI t;,dIf (x t) - f(x) gn (t)dt

<f6 g(t)dt * lit1 >6Z(t)dt

Cff'g(t)dt +2Mfll.I ntd

<- 1i+ 2M.- E:, for all large enough n.

Theorem 2

If Q (X) = c (1 - xZ)n for -1 < x < 1, and Qn (x) 0

otherwise, for n = 1, 2, 3, ... , then the c's can be

chosen so that the following conditions hold:

a) Qn(x) is even;

b) f_ Qn(t)dt - 1;

c) Qn(x) > 0;

d) For each e > 0 there exists a 6 > 0 such

that ltL>6 Qn(t)dt < c if n is large.

Proof

To see that Qn(x) is even, substitute -x for x.

Then Qn(-X) = cn(1 (-x)) c n(1 x2) = Qn(x).
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[= (1- t 2 )ndt is obviously finite, so we can let

(1-c~d Then Q Q(t)dt =1

(1- x2)n > 0 for -1 < x <1 . This implies that

c n > 1 for all n. Thus Qn(X) > 0.

We need to find an upper bound 
on c. Since jxj > x2

2 n n
for 0 < Ixi < 1, we have that (1 - x2) > (1 - lxi)

Then

x(1 2 )ndx= (1 - x2)ndx > 2f (1 -x[)ndx

-2(1 1 2lL0)nl
= n + i "" 0 n + n + I

2
n +

Since

1 * Qn(x)dx c cn(I - x2)ndx

we have that cn < ---2--

2o 2n 2 n 0, i _x <1thn .x . Tu

1 > 1 - x2 and (1 - n > (1 x2 for

n = 1, 2, 3, ... if Qn(x) c (n1 - x 2)n whr

n n
c< n+I then

Qn (x) - c n1 x2 < -- i-x) n _ - (I"2n for

6 < lxI < 1.*1
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Given E > 0, we have

f t> Qn(t)dt < J nt[>6  )I-( )ndt

--- (I- 62)nJ t j > 6 dt

= n --( 1 - 6 2)n 2 dt

= (n + l)(l - 6 2)n(I - 6).

This last quantity goes to zero, as n - ®. Thus

fIItI> Qn(t)dt < e if n is large.

Theorem 3

Let f be as in Theorem 1. Then Pn (x) - (Qn * f)(x)

is a polynomial and thus P nCx) is a family of polynomials

which approximates f uniformly.

Proof

Our assumptions about f show, by a simple change of

variables, that

Ca
Pn (x) 0 CQn * f)(x) - Qn(u)f(x + u)du

. f Qn(u)f(x + u)du f J f(x + U)Qn (u)du
-1 -x

1 J f(t)Qn(t - x)dt,

where x + u a t, or u t - x. Thus

Pn(x) - f(t)Qn(t - x)dt, which is clearly a polynomial

in x. The finial conclusion follows from Theorems 1 and 2.

I
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III. PROOF DUE TO LEBESGUE

There is a multitude of proofs of the Weierstrass

Approximation Theorem. However, one of the simplest and

most direct proofs is due to Lebesgue, in 1898. (Because of

its simplicity, this proof is suitable for undergraduate

mathematics majors.) The basic method of the proof is first

to establish that the function f(x) may be approximated

arbitrarily closely by a broken line. That this may be done

follows from the fact that f(x) is continuous on a closed

interval, and hence uniformly continuous. The second step

is to show that the broken line may be approximated

arbitrarily closely by a polynomial.

Our proof will be presented in the form of three lemmas.

Lemma 1

Let f be a continuous function on (0,I]. Then f

can be uniformly approximated by piecewise linear functions.

Proof

Pick 6 such that If(u) - f(v)l < 'z if Ju - v1 < 6

(by uniform continuity). Pick xi , i - 0, 1, ..., k with

0 - xo < xI < ... < Xk = 1 so that xj 1 - x.I I 6. Define

p such that p(x.) - f(x.) for j - 0, 1, ..., k and such

that is linear between the x.'s. Then if x < x < xj I ,

OW f(xj+ 1 1  f(xj) ( x)
{x) = Xj+l x. C ) fxJ
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Then

If~x) -~p~x)f - x f i(x x. f .

jfx x~-x {3 J-x
If(x) - [x-+ 1 Xf(x1) "{ - f x

If x[f(x) - f(x +1)] -"--.Al [f(x) - f(x)l
Ixj+ +1 -j j+l j

-xj+ 1 - If(x) -f(xi+,) + -Xj+l If(x) - f(x.)f

< 1 + +1 "Z

Definition

For each real number a, define o a (x) - max(x a,O).

Lemma 2

The function p(x) of Lemma 1 can be written

k-i

(x) f(O) + k aj -xCX)j-O -o

for 0 < x <.

Proof

The function cO(x) is clearly linear for

x A {x0 , x1 , ..., xk}. All we need to show is that we can

find ao, ..., ak 1  so that (p(x) = f(x.). This is

equivalent to solving the following system:

--- ~..
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(P(x 0 f(0)

( (x I ) - f(0) + aoPxo (xl) - f(x I )

S(x2) = f(0) + aovx (X2 ) + a lPxl (x 2 ) f (x 2 )

(P(Xk) =f(0) +a, x k) +al(Px (Xk) +... +ak. Xk1 (xk) f (xk)

This system can be trivially solved recursively, proving the

lemma.

Remark

It follows from Lemmas 1 and 2 that if we can approximate

the functions pa(x) arbitrarily closely on [0,1] by

polynomials, then we can approximate f(x) arbitrarily

closely on [0,1] by polynomials. But

a (x) a (lx - al + (x - a)), so, in reality, we have to

approximate Ix - al on (0,1]. For this, it clearly

suffices to approximate Jxf on an arbitrary interval (-A,A].

But if we can approximate lul on [-1,1], that is, if

lul- p(u) I < X on -1 < u < 1,

then, setting u = x, <xj < A and

tAIxI Ap(x3I < e, or

jjxJ Ap(XJj < e on jxl < A.
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Lemma 3

IxI  is approximable arbitrarily closely by polynomials

on jxj < 1.

Proof

Consider the function g(t) -I1 t on 0 < t < 1.

Write

g(t) = Tn (t) + R n t)

where T nt) is the Taylor polynomial of degree n, and

Rn (t) is the remainder. We will show that Rn (t) - 0

uniformly on 0 < t < 1.

Write R n(t) in the Lagrange form

n t) f (t u)ng (u)du, where

(n°' o -1)( I -2) ... [1 -n) I -  -.Rn (t) (t71 )n (nl

Then

[H~n -n 1}. C u n

R n t) 71 n! fl ft (t- u) n(1 u) 1d, n

< (1 -[1 1] - 11 n.. - -

f (I u) 'd
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We need to show that pn i T - " fi-3 -.n 0

as n ®, or that log pn n -® as n =. Now

log p~log I ~. + logi 1 + .. + iog[i L3 and
log(l + (-h)) - log 1 . log(l h) +1 as h 0.

-h -h

log(l-h) 1 hSo if h is small, l - h) > , so log(l h) < - .

Then, if n is large,

log 1 + log 2)

< 1 + 2(n+ ) + "'"1

Since the harmonic series diverges, the right side goes to

-®. Thus Pn 0 0, and Rn(t) - 0 uniformly for 0 < t < 1.

Thus, if n is large, [Rn(t)I < e for 0 < t < 1, and

g(t) - I/--t - Tn(t)l < e for 0 < t < i. The same

inequality continues to hold on 0 < t < 1 by continuity.

To finish the proof, note that if lxi 1 1, then

0 < 1 - x2 < I and IxI - /I - (1 - xZ). From the argument

above, we can find the polynomial p such that

IVT - t p(t)I < c for 0 < t < 1, and so

lxi p(l - x2)1 - I/1 (1 - p(l x2)l < c

for rxl < 1.

4i

'1 ___
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IV. PROOF DUE TO BERNSTEIN

This proof utilizes the Bernstein polynomials which

arise from the study of probability. In the process of the

proof we obtain a specific polynomial that estimates the

given function to the desired degree. For this reason this

proof is sometimes of interest to applied mathematicians.

Before proceeding with the proof, we need some

preliminary computations.

Preliminary Computations

From the binomial theorem we see that for any

p, q ( R we have

S(]pkqn-k (p + q)n for n E I. (a)
k-m

Differentiating with respect to p we obtain

[nlkpkq n-k n(p + q)n-l

whi ckhiP qe p(p + q)nl for n E I. (b)

Differentiating once more we have

- p(n 1)(p * q)n- 2 + (p + q)n-,

ka Oand sol
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n 2(n p qn-k . p2f, -
1 (p + q )n-1 + P *p q)fl-l. (c)

kjO nj q n)

Now, if x E [0,1], set p - x and q , 1 x. Then

(a), (b) and (c) yield:

n (nIxk(l - x)n -k 1,

.O [nxk(l _ x)n-k - x

k-O

Rewriting these three equations we have:

k- X2()Xk(l )nk -X,k-O

krn k n-k
-X 2x X (1 - x)n-- 2x2,
k- n kn

ki0()[k -xnk- - X)
k-O

If we add these three equations together we have that

na [2 _ 2xh k ](n(xk. -)nk a -2 2 x2 *1) +

or that

n Ic - (l - - (iS - k x) - x 1x for O<x<.
k-On x k



is
Statement of Theorem

Let f be any continuous function on [a,b]. Then,

given e > 0, there is a sequence of polynomials {Pn} ,

such that {p n}. converges uniformly to f on [a,b].

Proof

By Chapter I we know it is sufficient to prove this

theorem for the special case in which [a,b] - [0,1].

For any continuous f on [0, 1] we define a sequence

of polynomials {B n}. 1  as follows:

B (nx) ( - xlX) n-k for 0<x<'l and n(I.
k-O k (10

We call Bn  the nth Bernstein polynomial for f. Given

e > 0 we shall show that there exists N E I such that

If(x) - Bn(X)I < e for all x ( [0,1] and n > N. This

will show that {BnIn.i converges uniformly to f on

[0,1].

From the Preliminary Computations we need the following

two equations:

n ()k~l X n-k 11
k-0 k

i and,

andk~0(~ x 2 (n]xkl ) n-k - Lin) 2

for 0 < x < 1 and n ( I.

III ! -ii
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f is uniformly continuous on [0,1] since f is

continuous on the closed interval [0,11. Hence, given

E> 0 there exists 6 > 0 such that If(x) - f(Y)I < £

whenever Ix - y[ < 6 and x, y E (0,1]. Let

M - supjf(x)j for x E [0,1]. We may assume M > 0.

Choose N E I such that

<(3)

and such that

< (4)

Now fix x E [0,1]. Multiplying (1) by f(x) and

subtracting Bn , we obtain for any n f I

f(x) - Bn(x) -k0 [f(x n f()(kl-xnk

- (S) (

where ' is the sum over those values of k such that

JE- xj < 1 (6)

while " is the sum over the other values of k.

If k does not satisfy (6), that is, if n- x >

then (k -nx) 
2  n nj > Ar.. Hence

" " [f(x) f(--](n)xk(l_ x)n -k ]

[I..[..x.I + f ( (I ]. 
.xk(l x).n-k

n]_______ k
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<_2M~ ~xc xk nk 1

- r .k )( xkll -n-k2M kOX

.2M (kn n2 (nxk(l-' =O I ] x) n k .Snx)
< -~- ~ (k - nx)2 (n] xkc - x1l

,'T k-Ok

2M n 2 -kx ' 2 (n) xks -1 n-k

A-3. k 10O I(l JkJX)

Multiplying (2) by n2 we see that

2MI < nx(l - x) < 2M

If n > N, it follows from (4) that 1 < F or n <

and so

Moreover, if n > N and if k satisfies (6), then, by (3)

and (6), 1 - x < 6 and so

Thus

E ]Ikn1 k:l X n'kl
in ir [f~x) _ f(k]]nX~ ~k

<cl'(nJxkc1  X)n-k

and so by (1) Ilg' <

Thus, from (5),



18

f(x) - Bn (X) + + < I II < =

Since x was any point in [0,1] and n any integer

with n > N, this shows ff(x) - Bn (x) < e for 0 < x <

and n > N.

Remarks

The idea for this proof arises from probability, as

follows: Let Sn be the number of successes in n

independent trials with the probability of success in each

being p (0 < p < 1). Then the weak law of large numbers

says that

Prob(l-. -p > C *0 as n - for each fixed e,
Sn

S
or -- * p in probability.

Now if f is a real arbitrary function, it seems

reasonable that f -R] - f(p) in probability, and

furthermore that E(f(..)-n E(f(p)) - f(p). But

f-i! f(IlProb(Sn - k)

n l()(k) p)n-k

With this in mind, Bernstein justified these steps, and

then showed the convergence is uniform.

_____



19

V. THE STONE-WEIERSTRASS THEOREM

In this final chapter we present a generalization of

the Weierstrass Approximation Theorem called the Stone-

Weierstrass Theorem. This theorem is helpful to those who

wish to study operator theory and functional analysis.

We will prove this theorem using the following three

steps. First we will show that A, a closed subalgebra of

C(X,R), for X a compact Hausdorff space, is also a closed

sublattice. Next we will show that if A separates points

and contains a nonzero constant function, it strongly

separates points. Finally we show that A equals CCX,R).

The Stone-Weierstrass Theorem

Let X be a compact Hausdorff space and let A be a

closed subalgebra of CCX,R) which separates points and

contains a nonzero constant function. Then A equals

C(X,R).

Proof

Note that C(X,R), the set of all real continuous

functions on X, is a Banach algebra.

STEP I: Let X be a compact Hausdorff space. Let A be

a closed subalgebra of CCX,R). Then A is a closed

sublattice of CCX,R).

In the proof of this step we make use of the concept

of the absolute value of a function. If f is a real
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function defined on a topological space X, then the function

jfj is defined by IfI(x) = jf(x)(. If f is continuous,

then if is also continuous. We observe that the lattice

operations in C(X,R) are expressible in terms of addition,

scalar multiplication, and the formation of absolute values:

f vg - f + g + ZIf-gl =i max{f,g} and f A g = lL If L gL - min{f,g.

These identities show that any linear subspace (that is, a

subspace closed under addition and scalar multiplication) of

C(X,R) which contains the absolute value of each of its

functions is a sublattice of C(X,R).

By the above remarks it suffices to show that if f is

in A, then ifi is also in A. Let e > 0 be given.

Since Itl is a continuous function of the real variable

t, by the Weierstrass Approximation Theorem there exists a

polynomial p' with the property that Ilti - p' (t)I < ~.for

every t on the closed interval [-ItfII,jjf(]. Let p be

the polynomial which results when the constant term of p'

is replaced by zero. Then p is a polynomial with zero as

its constant term. Since 101 - 0, and litt - P'Ct)j <

or 10 - p'(0)l - lp'(0)l < ., the constant term of p'

must be less than . Then, when we replace the constant

term in p' by zero, we are changing p' at most by ,

so that the largest difference we could now have between p

and Itt is c + Cor e. Thus Aist - p(t)l < e for

every t in [-11fJI,ItfII]. Since A is an algebra, the
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function p(f) in C(X,R) is in A. f(x) for any fixed

x is just a real number, in fact, a real number in

[-lIfJJ,I1fII]. Thus it is easy to see that

cf(x)I - P(fcx))) < e for every point x in X, and from

this it follows that J11fl - p(f)j < e. We conclude the

proof by remarking that since A is closed, the fact that

Ifl can be approximated by the function p(f) in A shows

that Ifl is a limit point of A and thus is in A.

STEP II: Show that A strongly separates points; that is,

if x and y are any two distinct points of X, and if

a and b are any two real numbers, then there exists

f E A such that f(x) = a and f(y) - b.

Note that if X has only one point, then C(X,R)

contains only constant functions, and since A contains a

nonzero constant function and is a subalgebra, it contains

all constant functions, and thus equals C(X,R). We may

thus assume that X has more than one point.

Since A separates points, there exists a function g

in A such that g(x) # g(y), where x and y are

distinct points of X. We now define f by

f~) 9 a(x)  g (y) 9(y b - gx"

Since g~x) - g(y) is just a nonzero real number, f is

in A, and

Sf(x) - - C) + " 4 a, and

g
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f(y) = a g  " C - = b.

Thus f has the required properties.

STEP III: Show A = C(X,R).

Let f be an arbitrary function in CCX,R). Since

A c C(X,R), we need only show C(X,R) c A, that is, that

f is in A, to show that they are equal.

Since A is closed, it contains all of its limit points.

We will show that f is a limit point of A; that is, for

E > 0, there exists a function g in A such that

11f - gil < E. Thus what we really have to prove is that for

e > 0 there exists g in A such that

f(z) - e < g(z) < f(z) + e for all z in X. We now

construct such a function.

Let x be a point in X which is fixed, and let y

be a point in X different from x. By Step II, there

exists a function f in A such that f y(x) - f(x) and

f y(y) - f(y). Now consider the open set-yf

GY {z E X: f (z) < f(z) + e}. Both x and y belong to

GV, for f (x) - f(x) implies that f (x) < f(x) + e, and
Iy y

similarly for y, so the class of G y's for all points y

different from x is an open cover of X. Since X is

compact (by hypothesis), this open cover has a finite

subcover, which we denote by (Gyl , G y2, ..., Gn1. If the

corresponding functions in A are denoted by

II
, l I I II i • , • •.
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fY , f "'2 f n  then gx = f ^ f A...A f is a

function in A such that gxCx) - f(x). We see that if

z E G , then

gx(z) - min{fy (z), ..., fYn (z)} < fYk (z) < f(z) + c. Thus

gx(z) < f(z) + c for all points z in X.

We next consider the open set

Hx = {z ( X: gx(z) > f(z) - e}. Since x belongs to Hx,

the class of Hx's for all points x in X is an open

cover of X. The compactness of X implies that this open

cover has a finite subcover, which we denote by

{HxI, H x, ..., H xm}. We denote the corresponding functions

in A by gx, gx, 2 ..., gxm , and we define g by

g-gxl v g v ... v g. We see that if z E Hxk , then

g(z) - max{gx (z), ..., gxm(z)} > gxk(z) > f(z) - C.

Thus it is clear that g is a function in A with the

property that f(z) - £ < g(z) < f(z) + e for all points z

in X, so our proof is complete.

Comment

This theorem does not hold in general for complex

algebras. A counterexample would be:

Let A be the set of all continuous functions in

IzI < 1 which are analytic in IzI < 1. We see

that A is an algebra, and since the function
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gCz) = z is in A, A separates points. However,

A is not C(IzI < l,C), since f(z) - Izf is

not analytic.

However, the conclusion of the theorem does hold, even for

complex algebras, if an extra condition is imposed on A;

namely, that for every f E A, its complex conjugate T

must also belong to A.

1.%

*1
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